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AXTALLY SYMMETRIC SHAPES WITH MINIMUM WAVE DRAG!®

By Max. A. HEASLET and FRANKLYN B. FULLER

SUMMARY

The external wave drag of bodies of revolution moving at
supersonic speeds can be expressed either in terms of the geometry
of the body, or in terms of the body-simulating axial source
distribution. For purposes of dertving optimum bodies under
rarious given condztw'/w, it 18 found that the second of the
methods mentioned is the more tractable. By use of a quasi-
eylindrical theory, that is, the boundary conditions are applied
on the surface of a cylinder rather than on the body uself, the
variational problems of the optimum bodies having prescribed
volume or caliber are solved. The streamwise variations of
cross-sectional area and drags of the bodies are exhibited, and
some numerical results are given. The solutions are found to
depend upon a single parameter involving Mach number and
the radius-length ratio of the given cylinder. Variation of this
parameter from zero to infinity gives the spectrum of optimum
bodies, for the prescribed condition, from the slender-body result
to the two-dimensional. The numerical results show that for
increasing values of the parameter, the optimum shapes quickly
approach the two-dimensional.

A reciprocity relation for axial flow is derived, and it is used
in formulating the variational problems in terms of the drag
Jormula involving geometry. Formulation of the minimum
problems in terms of combined flow fields is found to lead to
extremely simple relations that are satisfied by the flow field
induced by optimum bodies. The combined flow concepts are
also useful, for example, in checking results found by other
means.

INTRODUCTION

The design of minimum-drag configurations is one of the
fundamental problems of aerodynamics. For many en-
gineering purposes it is, furthermore, possible to make useful
predictions and design calculations for steady flight by con-
sidering additively the drag attributable to the viscous
nature of the air and the drag that occurs in an inviscid
medium. Since efficient flight is closely associated with the
use of aerodynamic shapes producing relatively small dis-
turbances in the air, the analysis upon which the inviscid-
fluid theory is based can, in many cases of practical interest,
be further limited to first-order approximations involving
small perturbations. For supersonic flight speeds such an
analysis is linear, the perturbation velocity potential of the
flow field satisfies the wave equation, and the pressure drag
of nonlifting configurations results from the accumulation of
energy in the waves induced by the body during its motion.

The purpose of the present paper is to show how most
" tBupersedes NAGA TN 3389 by Max. A. Heaslet and Franklyn B. Fuller, 1655,

favorable body shapes, under various given conditions, can
be derived by using formulae for drag prediction that are
based upon the linearized theory. The type of body to be
treated is a nacelle- or duct-like configuration (nonlifting and
having axial symmetry) which induces perturbations that
are specified on the surface of a circular cylinder. The
analysis might be termed quasi-cylindrical, since boundary
conditions are applied on the surface of a cylinder rather
than on the body itself. Only the external flow is considered.
There are two rather different methods available for the
calculation of drag of such bodies. The first, given by Ward
in reference 1, expresses the drag in terms of the geometry of
the body and of a weighting function first encountered by
Lighthill (ref. 2) in connection with the drag of fusiform
bodies. The second result, published recently by Parker
(ref. 3), is a formula in which the drag.is expressed in terms
of the strength of an axial source distribution that simulates
the body shape. Generally speaking, the formula giving
drag directly in terms of geometrical characteristics would be
preferable, since the usual auxiliary conditions in variation
problems, such as given volume, given caliber, etc., are also
expressed in geometrical terms. Unfortunately, however,
the variational problem in this case leads to an integral
equation whose kernel is the Lighthill function mentioned
previously, and the properties of this function are not at
present well enough known to enable one to solve the integral
equation by other than numerical methods. On the other
hand, the expression for drag in terms of sources leads to a
tractable integral equation, although the relations between
source strength and geometry are somewhat complex.
Problems of the sort to be treated here have been attacked
by Ferrari (refs. 4 and 5) and by Parker (rvef. 3). The first-
named author has approached the problem of minimum drag
with assorted isoperimetric conditions by both the above-
mentioned methods, but the main effort was made in con-
nection with the source-strength method applied in con-
junction with a control surface consisting of 8 frustum of a
cone. A large number of cases have been worked out,
mostly by numerical methods. - The other work, reference 3,
gives a solution to the problem of the mlmmum-d_mg body
with given caliber, making use of boundary conditions on the
Stokes’ stream functlon rather than the potential function.
In this paper we shall approach the problem by the use of
both methods outlined above. In an introductory section,
the operational approach to the wave equation is extended
to bodies having peripheral as well as longitudinal variations
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of surface shape. The analysis is then restricted to the case
of axial symmetry and the two drag formulae are given.
Then a reciprocity relation for axial flow is derived, and the
notion of combined flow fields is introduced. This device
leads, through application of the reciprocity relation and the
drag formula in terms of bedy geometry, to extremely simple
physical characterizations of the flow fields associated with
optimum bodies. Next, in order to derive explicit expres-
sions for some optimum bodies we consider the source-
function approach in combination with & cylindrical control
surface on which boundary conditions are specified. The
results obtained are discussed with the aid of numerical
examples, and, finally, the reciprocity relations derived
ecarlier are exhibited in terms of the explicit solutions found,
and some uses of the reciprocity results are indicated.

The appendix is devoted to summarizing the results of the
minimizations for the convenience of the reader.

LIST OF IMPORTANT SYMBOLS
a, speed of sound in free stream

A(x) strength of source distribution

B(o) function used in isoperimetric problems (See
eqs. (60).)

C, pressure coefficient, Z—2

D drag ’

E comrplete elliptic integral of second kind of
modulus %

k modulus of elliptic integrals

K complete elliptic integral of first kind of modulus %

K. In Bessel functions of order m (See ref. 8.)

l length of body -

M, Mach number in the free stream, %

Ny, N2, N3 direction cosines with respect to Cartesian axes
of the inward normal to a surface

P pressure

Do pressure in the free stream

P pressure in a combined flow field, p—7

Qo dynamic pressure, % pU o2

r radial coordinate, vy*+2*

Ar(x) incremental radius on control cylinder due to
source distribution along axis

R radius of ¢ylindrical control surface

S) cross-sectional area of a body

AS(z) S(z)—S(o)

29,2 Cartesian coordinates

U,0,W perturbation velocities in 2,7,z directions, respec-
tively

U, free-stream velocity

o, perturbation velocity in radial direction

Vv volume of body -

V, additional volume wrapped on cylindrical con-
trol surface. .

W(2 function defined in equation (25)

a? parameter of elliptic integral of third kind

g M2—1
7 dimensionless streamwise coordinate, %
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6 angular coordinate, tan*‘s
Mu Lagrange multipliers in isoperimetric problems
(et k) complete elliptic integral of third kind of modu-
lus % and parameter ® (in notation of ref. 20)
Po free-stream density
BE
7 I
@ _perturbation velocity potential
’ SUFFIXES
’ differentiation with respect to streamwise coordi-
nate
~ quantity evaluated in reversed flow field
- Laplace transform
* dimensionless quantity as V*=E—§; S"'=l—S,; olc.

INTRODUCTORY ANALYSIS

The analysis to be given here is adapted to boundary con-
ditions specified on a right circular cylinder so oriented that
its axis is parallel to the free-stream velocity vector.
Immediate application thus follows for quasi-cylindrical
shapes that deviate slightly, both longitudinally and periph-
erally, from a cylindrical control surface although the expros-
sion for drag can be extended to include the domain of
slender-body theory.

Consider a fixed Cartesian coordinate system in a super-
sonic free-stream of velocity U, and Mach number M,=U,/a,
>1 where a, is the velocity of sound in the free stream. The
z axis is alined with the direction of the flow and the lateral
coordinates v,z may also be expressed in polar coordinates
r,0 where r=+4*+2% f=tan~'z/y. A cylindrical control
surface of radius r=R=const. is given with the range
0 <z <l and on this control surface the perturbation velocity
components, together with their gradients, are small relative
to U, and U,/l. Under these conditions the field external
to the cylinder of radius R has for its governing equation the
linear relation

Bz‘{’xz'—ﬁon_ﬂou:O (1)

where the subscript notation denotes partial differentiation,
o(z,y,2) is the perturbation velocity potential yielding the
perturbation velocity components

u(z,y, 2)=or (a:,y, z), v(z,y, z) =y (a:,y, 2) y W (:c,y, 2)=¢, (13,1/, 2)

and g*=Mj2—1. The boundary conditions on the body are
to be taken in the form

ez, B)]rae=U,G(x,9), 0<z<l! 2
where @ is & known function of z and 6.

A GENERAL SOLUTION OF THE WAVE EQUATION IN CYLINDRICAL COOR-
DINATES

If equation (1) is rewritten in the form
B om—err—(1/r)er—(1/r)*p0e=0 6))

it is possible, through separation of variables, to derive a
general solution representing & rectilinear distribution o
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source and multipole singularities. This general solution can
be found by use of the Laplace transformation. By defini-
tion, the Laplace transform? (see ref. 6) of a function
F(z,r,0) is F(s;r,6) where

F’(s;r,&):ﬁme‘”ﬁ'(z,r,o)dx @

If one employs this transformation and applies initial condi-
tions consistent with supersonic flow theory (ref. 7), equation
(3) becomes

Be—o,—(1/r)e-—(1/r)pse=0 (5)

The tranform of the perturbation velocity, potential is
assumed separable in the form

#(8;7,0)=¢(r,8) cos mo

and it follows directly that {(r,s) must satisfy the ordinary
differential equation

1 de [, om
d(ﬁrs)’+ﬂrs d(Brs) |_ (Br.e)2

Thus, the solution can be written

=0

P57, 0= 33 €08 1 (A Kt fr6)+ Bon(8) In 1)

where K,, and I,, are modified Bessel functions in the nota-
tion of reference 8. The asymptotic expansions for the
Bessel functions show that I, yields incoming waves suit-
able for the analysis of flow inside a tube or cylindrical
control surface; K, yields outgoing waves that are suited to

the calculation of the field external to a tube. It follows
that one has, in the latter case,
PO 0)=—g= 3 Z(6) En(Bro) cos m0 ©®

The inversion of equation (6) can be achieved in two
ways. First, from reference 9, page 277, and the convolu-
tion integral, one gets

a—zy—pr
gy Am(@y) cosh ( m cosh™? TN de,
f:,cos mﬂf 4 ( br ) }
1 0 VJ—2)*—pr2 -
)

Second (see, e. g., ref. 8, p. 79), one has

En(pra)=(— 1" gz () Eulbr)

Thus equation (6) can be rewritten as

BT By=— [A.,cs)Ko(ﬁrs)+

$2(=5) v mo () 220 B
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and the inversion is

= Ax)dr,
p(e,r,0)=— [f —z)—pir T
0,;(171) d.rl

i(—— cos mB( dr) fz_ﬁr Ty ®

where the function C,(z) is given by (from operational
calculus rules)

Cal@)= | dom -+ [t [ Anlara

o M N ©

Equation (8) expresses the solution in the usual form,
given, for example, in reference 10, page 527. For some
purposes, numerical calculations for example, equation (7)
has advantages over equation (8). The two solutions
express the perturbation velocity potential in terms of
distributions of singularities along the central axis, the first
term representing a distribution of supersonic sources of
strength 4,(z)dz, and the subsequent terms representing
multipoles of order m.

It is of interest to calculate the limiting forms of equations
(7) and (8) for large and small values of r. For large »,
equation (6) becomes

12
BEin, )~ —5- 33 An(®

_T —Brs
T e~f cos mo (10)
where the asymptotic form

K, (2) ~‘/21: et

has been used. The perturbation velocity potential is then

o(z,r, g)~—

6 A,,.
21.—1/2& ; cosm O == Vot
The ultimate attenuation of ¢ with lateral distance is there-
fore fixed by the factor 1/y7. For small r, equation (6) be-
comes

(11)

pem0~—s | ~40) (1n B4 )+

$ An(e) (m—1)! <ﬁr> cos ma] (12)

where Y=0.577 is Buler’s constant. The inversion of equa-
tion (12) is

o(2,7,0) =~ %[A,(x)ln %-l_b_z; J:Aa(:cl)lnl:c—:cl |dz,+

$ (%)ﬁ (m;zl)! cos mb C’,,,(:c)] (13)

where C,(z) is defined in equation (9). This result was used
by Ward (rvef. 11) as a basis for the development of slender-
body theory.

2 Tt will be assumed through the present section that the origin Hes upstream of all disturbance points in the flow fleld. Subsequently, the origin will be shifted so as to lie at the upstream

face of the control surface or body.



134

As presented, the above general solutions (egs. (7) and (8))
were not related to specific boundary conditions. The formal
development of this relation is straightforward and leads to
an explicit solution for boundary conditions given on the

cylindrical control surface at r=R=const. Let the given
conditions be
2 z=Us6(@,6)=T, > gn(a) cos mf (14)

From equations (6) and (14), one has
R R SN .1
757, Ol = 35 An®) [ L Kon(pr) | _cos mo

=U, Z:) En(8) cos mo (15)
Since
L K (6riy=poKs (6r9)

equation (15) yields

27U, g.(8)
8 K. (6F%) (16)

and the transformed velocity potential is, from equation (6),

An(e)=

U, &\ 2n(8) Kn(Brs)
; s K. (GRS cos mb an
In order to give the desired expression for ¢(z,r,0) it is neces-
sary to calculate the inverse Laplace transform of the func-
tions K, (Brs)/K,' (BRs). This task has been undertaken by
Mersman (rvef. 12).

EXTERNAL WAVE DRAG OF QUASI-CYLINDRICAL BODY OF REVOLUTION
IN TERMS OF ITS GEOMETRY OR SOURCE DISTRIBUTION

o(s;r,0)=

Attention is now restricted to flow fields possessing axial
symmetry with respect to the steam direction. Independence
with respect to 6 then reduces equations (7) and (8) to

_ 1 e Aga)da
¢(27,7‘)— 2z Jo m (18)

and the velocity potential is expressed as a rectilinear dis-
tribution of supersonic source potentials. Operationally,
equation (18) takes the form

o8 =—5- Ap(s)K (Brs) 19)

The axes may now be considered as shifted so that the source
distribution starts at z=—BR and induces perturbation
velocities on the cylindrical surface r=R, 0<z=<l. For
r>R one then has the disturbance field associated with a
body of revolution that deviates only slightly from the
cylinder r=R. The wave drag of such a body can then be
expressed in two ways: first, as a function of the body geom-
etry; second, as a function of the source-strength distribu-
tion. The first result has been given in reference 1. To the
order of accuracy to which this control-surface theory applies,
the slope of the resulting surface is

dr S’(:c)

=R U or (20)
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where S’(z) is the streamwise derivative of local cross-
sectional area of the body. This condition, together with
equation (19), yields

A)__ 8@ 1)
U, — BRsK,(8Rs) >

where S’(s) means the Laplace transform of S’ (z), and

2s:B)__ 56 K(6R9)
U, 27BRs K.(BRs)

In order to calculate drag, pressure on the body is next
evaluated. Denoting by p and p, local and free-stream

(22)

pressure and setting qo=% poUS% one has in linearized theory

P—Do __2u(z,R)
Qa :lv-R— Uo (23)
From equation (22)
u(s; k) 7= Ko(BI2s)
o355 5@ ) &.(6Fs)
_57) K, (BRs)— K (8Rs)
32BR [1 D) (24)

The inverse transform of the second term involving the
Bessel function leads to the function W(z) introduced by
Lighthill (ref. 2). By definition, its transform is

W= 20 (25)

Pressure distribution on the body can then be calculated
from the expression

2 [ s [Ts@m (SR m] @

The function W{z) is shown in figure 1; tabular values for
—2<x<10 are given in reference 1.

T

| ) ]
=2 0 2 4 - 6 x

Firaure 1.—The influence function W(z).
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The external wave drag Cp, of the body is finally deter-
mined by direct integration :

dr 1 ‘p— 0 Q/
CDU:T R?SO-Tsz; 2 qap S (iv)d-'c (27)

and from equation (26) is

O g} 2 15"
5117, j: fol 8'(2)S" (@)W J%;%‘l)dx d:cl} (28)

In a later section entitled “Geometric Criteria for Minimum
Drag,” the role equation (28) plays in problems involving
drag minimization will be discussed. For the present, it
may be remarked that although the magnitude of the in-
fluence function W(z) is known, its analytic properties are
not well enough defined to permit easy manipulation. It
will become more apparent later that for certain minimum-
drag problems an advantage is provided when one deals
directly with source distributions and establishes the rela-
tionship between geometry and source strengths as a
separate part of the analysis.

Equation (18) expresses the potential of a source distribu-
tion of strength A4,(z). On the cylindrical control surface
r=R and within the range 0 <z<l an effective body shape
is induced and the drag of this body can be calculated as
follows, The streamwise and lateral perturbation-velocity
components are, respectively,

1 (e Al

o)== | . To—z)—pr | (29)
L (" (e—z:)A4,/(z)dz
olen)=gy [ AN (30)

where A,(z,)=0 for z,<—pR. The effective body, within
the range 0<z<l, is fixed by the boundary conditions of
equation (20) and its external wave drag is

= —ZB'pORJ;I tpz(ﬂ?, R)ﬂpr(x} R) dx

_p f' J —pr A, (z)(x—x)dz; (=2 A (x)d2s
2 Jo xf-—ﬂn E—2)*—FR*) pr VE@—2)—FR?

The dummy variables z;, ; can be interchanged; if one then
combines the two expressions of equation (31) and inverts
the order of integration,?® the integration with respect to z
can be performed and there results

(31)

1-pR
D =£—; f_m A, (zy)dx,

o _|G—z)(—z)—pR?
S A o= (a2

as given in reference 3.

It is of interest to remark that although equation (32)
uses only a knowledge of the function A,(z) in the range
—pBR<Lz<l—BR, the drag that is calculated presupposes a
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specific source distribution function in the range I—gR<z
if one wishes to identify the drag with a geometric shape.
Thus, as in figure 2, if the body shape near r=ZFE is assumed
to have some arbitrary variation for 0<z<l, and to
straighten out into a purely cylindrical surface downstream
of z=I, a source distribution function is required downstream
of 2=1—BR to produce the cylinder.

/ e
r // ///
A / rInduced stream direction /
7/ 7/

Uo 7 7/
Vi
Y /

|
/s Aplxy=— s/ /I’

s N Y4

Fieure 2.—Body induced on a control surface by an axial source
distribution.

The fact that the stream velocity is supersonic means
that upstream influences of A4,(x) for 2~>I—BR cannot be
felt on the body and explains why the drag of a complete
geometric shape can be determined from its source distribu-
tion without knowing the complete details of the distribution
function.

As another example of the use of equation (32) consider,
as in figure 3, a circular body extending from z=—gR to
z=! with a cylindrical afterbody of radius R aft of z=l.
If the source distribution of this body is known as, say, for
example, in the case of a cone or slender body of revolution,
the body drag can be determined by using the surface
r=R,0<z<l as a control surface and calculating momen-

~

Ficure 3.—Body nose induced by an axial source distribution.

3The Inversion of order i3 permissible only if A.(z) is suitably well behaved, & point that will arise later in the determination of the optimum body with given caliber.
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tum transport through the control surface. Equation (32)
is the exact expression for the body drag, and, again, requires
no knowledge of source strength beyond z=I[—8R.

COMBINED FLOW FIELDS

One method of attack that has proved to be extremely
helpful in the analysis of problems in aerodynamic theory
involves a symmetrization process in which flow fields in
both forward and reverse flow are related. Attention, up
to the present time, has been devoted principally to planar-
type problems and in reference 13 Jones has used this
approach to derive criteria that appear in the minimization
of wave drag of, for example, nonlifting wings having speci-
fied thickness ratios or volumes. In this section, a brief
discussion is given, using the methods of reference 14, of the
way these concepts appear in cylindrical-control-surface
analysis.

THE RECIPROCITY RELATION FOR AXIAL FLOW

Equation (1) can be written
Lip) =80 —opy—::=0 33)

where L(¢) is a self-adjoint linear operator. Let now
Y(z,,2) and 2(z,9,2) be two solutions of equation (33)
setisfying boundary conditions given on a circular cylinder.
Reciprocal relations betwen ¢ and @ can be derived by
applying Green’s theorem over a prescribed geometric
region. Consider, as shown in figure 4, the cylindrical con-
trol surface extending from z=0 to z=I[ and draw the
enveloping Mach cones ‘at the front and rear of the surface.

Ficure 4.—Surfaces of integration for combined-flow analysis.

Denote the cylindrical surface by =, the front Mach cone
z—Br=—pBR by Z,, and the rear cone z-}+gr=I+8R by
5. These surfaces enclose a toroidal region, bounded
internally by 2, and externally by =; and =,. It follows
from Green’s theorem that the integral relation

[ (—m 32 32, 38 0z
= [[o (=pm L, %‘l‘% iz (30

applies where the surface integration extends over Z;, 2, =;
and ny, n,, ns are direction cosines, with respect to the z, , z
axes, of the surface normal directed inward into the region.

It is customary to re-express relations like equation (34)
in terms of a newly defined directional derivative along 2 line
termed the conormal. In this manner, the equation becomes

ff¢A%—fdz=”mg—f¢iz (36)

dp_ O 0 0
-b—q::.a—-g V1+b—; Vg+b'—z V3 (36)

where

and the direction cosines v, », v; of the conormal are derived
from
—f=Av;, Na=Aw, nNz=Ar;

By calculation of the respective normals n;, 74, 73 and using
the relation »®+w?*+w?=1, it is readily found from the
equations defining the conormal that on the surface Z;, the
conormel is normal to the surface andA=1; on a Mach cone,
the conormal lies along the cone and A=g

Let now ¢ be set equal to o(x, r, §), the perturbation
velocity potential associated with boundary conditions in a
forward-flowing stream, and let @ be %(z, r, 6), the z-wise
component of perturbation velocity associated with boundary
conditions in & stream “flowing in the reverse direction.
Under these conditions, equation (35) becomes

r LI P ~ Op ~ Op

(e 1% ou ‘o
—J; Rds , ¢35, dotp sog;dzz—l-ﬁquogdza

Oo the Mach cone =, the perturbation potential may arbi-
trarily be set equal to zero and its conormal derivative along
the cone will also be zero; as & consequence, the second terms
on both sides of the equation vanish. Since the flow fields
are irrotational, d%/Or=0%,/0z where v, is radial velocity.
After making this substitution and integrating the first term
in the right member by parts, one gets

R f " ﬁ ‘tvdz=R f "|:¢(z,R,o)5,(z,R,a)— ﬁ "5 d:c:]do——
0 0

ar sw=] -bgo i
ﬁJ; df r ’u-—b—v-—gasg dv

z=1/2

The last integral becomes

) o) g ()

and for the given boundary conditions it is possible to show
that along a conormal of Z; the relation #,=g#% holds and
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7 @ is independent of ».
as

8 L i f _::2 Wrapd (g) d=pR fo " 31, B.0)o(l, R,0)db

and one hag, finally, the desired reciprocal theorem

The integral then can be rewritten

—R ﬁ "o fo Uz, R O)oy (2, R 0) do= R fo o ﬁ 'z, B,0)7:(z, B f)de
(37

It is not the purpose here to exploit the various applica-
tions of equation (37); rather, the role played by the recip-
rocal relation in drag calculations will be considered. In
the forward and reverse flow fields, the pressure-velocity
relations of linearized theory are

p—p=—pUs,  P—P=0pU,l (38)
If, furthermore, thickness distributions of the form
r=f@6), r=F@0)
are placed on the cylinder r=1, the boundary conditions are
127 _of 123 __?f
U,o7 |,ur oz U,07 |;mr oz

Equation (37) can then be written

-—J:IRdGJ: (p—p,) a

An immediate consequence of this last result is that for a
unique thickness distribution, that is, for f(z,0)=7F(,6),
the drag of a body in forward and reverse flow is the same.
This follows from the fact that for quasi-cylindrical bodies
the relations for drag are, respectively,

_ ir i _ Ej:
D=R| & o—p)-n3lds

~ o 1 - 91
D=—R fo ds fo (B—Dren L da

For fixed geometry, therefore, drag is equal to half the sum
of these two expressions

do=["Ras [ (r-p) 5L dz (39)

=L a0 o-pres L

Defining pressure P(z,7,60) in the combined flow fields by the
following

P (ﬂ?,?‘ﬂ) =p _f) = PUU o(u+'i;’) (450)
one has
D= da f PR L dx (41)

If the body has axial symmetry, equation (41) reduces to
the form given in equation (28). To show this, one notes
first that P and f are mdependent of 9 and that equation (41)
becomes

1
D=1 f PS'@)dx
0

137
The proof fc;llows from the relations

S'(:c)=[$"(x) \
N e
P(;: —r [25'(x)~f S @)W <‘z%l> giRl

GEOMETRIC CRITERIA FOR MINIMUM DRAG

Consider now the problem of minimizing the wave drag of
& quasi-cylindrical body subject to the condition that the
volume of the body is constant. The body surface may be
defined by

T=f(ﬂ:,0)=R+g(’.‘G,6) (43)
The function g(z,0) determines the magnitude of the surface

displacement from the cylinder r=R; these displacements, as
well as their gradients, are assumed small and we also assume

gz0)=0forz<0and =z

If equation (41) is integrated by parts with respect to z, the
wave drag of the body becomes

D=——— dﬁf PR f)e(e,0) diz (44)

where the prime indicates z-wise differentiation of P. The
imposed geometric constraint on the variational problem is

3 [[ao[ ranac=l | a rrorgem
—rRU+R fo "o ﬁ 'o(,0) de=V—const. (45)

where V is the total volume.
one of minimizing the expression

The problem thus becomes

D—pV——R {% L ) fo ‘Pra(z,6) dzt

" [sz+ ﬁ " do fo 'e(z,0) d:c]} (46)

where p is the Lagrangian multiplier.
variation, one has

Carrying out the

sD—uVy=—5 [ [ (P60)+e6P)+2usgldz=0

but from equation (87) or (39) it can be shown that the first
two terms in the integrand yield equal integrals and the
minimizing condition becomes

2x H
f s f [P'(z, B, 0)+-ulogdz=0
0 [1]
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Since this latter equation must be satisfied by all possible
veriations of the displacement function g(z,0), it follows
that the desired condition is

P,(x:RyB)_l'ﬂ:O (47)

Stated in words, the condition for minimum wave drag of a
quasi-cylindrical body of given volume is that the longi-
tudinal gradient of pressure on the body in the combined
forward and reverse flow field is a constant. Furthermore,
from equation (44), minimum drag is then given by

D,,,,,.=§ (V—waz)=§ v, 48)

where u can now be identified with the negative pressure
gradient in the combined field and (V—=zRH)=7V, is the
volume exposed to the fluid around the cylindrical control
surface r=~R.

The actual cross-section-area variation of a minimum-
drag constant-volume body and its pressure distfibution
are shown in figure 5 for the case in which axial symmetry

X /

7 < S
’ VRN
;ﬁ-%

Figure 5.—Mimimum drag body with pressure distributions in
combined flow.

is imposed. Pressure coefficient in the combined flow field
of an axially symmetric body has been given in equation
(42). The geometric criterion just established then leads
to the integral equation

25— || sew (B2 Bty o)

and the solution of this equation will determine the body
geometry. In the following section an analogous integral
equation will be derived but with the source-strength dis-
tribution chosen as the fundamental dependent variable.

The combined-flow-field technique can also be used to
study the problem of minimizing wave drag for specified
body caliber or, more generally, when the body has a fixed
cross section at a specified longitudinal position. The
resulting condition for minimum drag is thet the pressure
distribution on the body in the ¢ombined flow field is a
constant forward and aft of the specified position. These
conditions are all analogous to those obtained for planar
problems by R. T. Jones (ref. 13).

DRAG MINIMIZATION

In this division, optimum bodies having certain prescribed
geometric properties will be determined by standard varia-
tional methods. The analysis will, as mentioned previously,
deal with the strength of an axial source distribution as the
minimizing function, rather than the geometric quantity,

" \
R el
4
Ar
/] T
I / /
R / /
/ /
| /
£ ,/\ -
-8R \\ =BR N\
\\ \\
1 -

Figure 6.—Body and associated nomenclature used in drag
minimization.

cross-sectional area. Thus, we shall be concerned with
formula (32), giving drag in terms of the source distribution.

QUASI-CYLINDRICAL BODY OF REVOLUTION OF GIVEN YOLUME

Isoperimetric conditions.—The configuration to be con-
sidered, together with associated nomenclature, is shown in
figure 6. The geometric properties of the body can be
expressed in terms of the source distribution function A,(z)
by using equation (20), namely,

s@=2L, (50)
Then, from equation (30)
y =L #=hR &’(xl)(z—xl) da, 1
If equation (51) is integrated z-wise it is seen that
—_ bR (z_zl)Aa (z1)dy 2
S-S [ [ TR G

By changing the order of integration and performing the
integration with respect to z one finds

==PR  (z—x) A(x) da,

2 —FT" (62b)

Sx)—S(o =l—:;-
or, integrating by parts,

S(:c)—S(o)=i f _: Al @)@y —FRdr,  (52¢)
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The magnitude of the additional volume wrapped around
the cylinder is

V= f ' [S@)—S(o)dz (538)
0
and, from equation (52b),
Vg |7 AoV T—ay—FFidn  (53b)
] —8R

The variational problem.—The quantity to be minimized
will be taken as D—yuV,. From equation (32), the drag
can be written, after an integration by parts,

P fz—;m Ay(zda, 1~6E 4 !(1,) ,_(l—x’)z—ﬁaRadxg
dr Jopr J(i—2,)—FR2 J & T —is

(54)

In addition to prescribing the volume added to the funda-
mental cylinder, we shall also require that the body return at
the end to the same cross-sectional area as at the front.
Thus, according to equation (52b),

1-g& (l—x)) A () dz,

I~z —FF (55)

1
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is & condition to be met by the minimizing function .4,(z,),
and by its variations.

The quantity D—uV, can be formed from equations
(53) and (54), and if the variation is performed, one finds the
condition

f’—ﬁR 3. A (z)dz,

{ f A @)U~z —F R dz,—
—BR '\l(l_xl) —ﬁaRZ LJ -8

Ty —La
o 0=y —FT | =0

If this last equation is compared with equation (55), it is
seen that for admissible variations, the quentity within the
brackets must be set equal to A({—z,), where ) is an arbitrary
constant. Thus, the equation for determination of the
optimizing source distribution under the conditions of given
volume and closure is

[ AN B 258 (1 p

B8R —Z

(56)

Equation (56) is recognized as the familiar airfoil equation
th [4/@)/(—=)—BFR? as the unknown. Thus we

write the solution immediately as (see, e.g., ref. 15)

1=fR 2 2 —
-Aa (T) V(l—iﬂ) —B I _T'\/(l_ﬁR_:C) (3"‘53) {Tf—ﬁk A, (2?1) V(l_xl) _ﬁaR 1

r-an =2+ (=~ R

I

The first integral on the right vanishes according to the
closure condition (55) and, if the remaining integrations are
performed, we find

1

A N =B R == T BT
I(+4BR) ( 2x1 —AR— [ _
= '<an0 4o )+ AN(I—22)+

27 s _QRiPt__
2 (3l —4pRI—SF'R 12la:+83:’):|}

It will be noted that unless

2wl
P oU 1

this solution for A4,’(x) does not obey the closure require-

+22=0

ment. Therefore we impose this last condition and finally
obtain
2—4B8RI—8p*R*)—8lz--8*
Ao, 2) M1 (l’ 48
ST N ey AN 1) &N

The strength of the minimizing source distribution A,(z)
is now obtained by integrating equation (57);

Add=5 17

" . —2z
. 96 R? cos 1l+2ﬁR:| (588)

T—I;

V(—BR—zy) (z,+BR) dxl}

Properties of the optimal source distribution.—It is con
venient to express the various quantities such as source
strength, area distribution, etc., as dimensionless functions
of the dimensionless variable =2/l and parameter c=8R/l.
Thus, indicating & dimensionless function by a star, we have
from equation (58a)

4205502 [ (1) Vo= F 9

20% cog~! 1;32] (58b)

It will be noted that if the radius of the control surface is
taken very small, so that ¢—0, formula (58b) becomes
l
AJ"(n)]«-»:=% A—29)vn(1—n)

which is the well-known slender-body theory result for the
source distribution corresponding to an optimum body of
given volume (refs. 16 and 17.)

In order to determine the value of the Lagrange multiplier

ui, in terms of the prescribed volume V., it is convenient
to find first the expression for the local cross-section area of

the optimum body. Thus, using equation (52c¢) (Witb

S*n)—7s S
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S"‘(n)—S"‘(O)=gigiw/(n+26)(1—n+20)
[11—n) E—o(l—4e) E—E)] (59)

where K and E are elliptic integrals of the first and secox.1d
kinds, respectively, of modulus

2= 71(1_’7)
(n+20)(1—1+20)

Using equation (59) in equation (53a), we find

Virtsl [ 2= Zoln— ) E—ofl—4o) (K—E)ldn
Qoo

_ul
=L Bo)

which expresses the constant w, in terms of the prescribed
volume V* (=%> and of a function B of the quantity
a=BR/l.

(60a)

A graph of this function B(s) versus ¢ is shown in

8

, pZ
' L~

e
v

o

v

Blo) 7z
A L

4
B ///
2 /

/ —— Exact, equation (60a)

=
/ —=— Asymptotic formula, equation (60 b)

(&)

0] 1 2 3 4 6 7 8 9 10

S5
o=BR/1
Ficurs 7.—The function B(a).

figure 7. Shown also in figure 7 is & dashed line that cor-
responds to the asymptotic form for B(s), which is

Blo)~ (40 1o

The closeness of the asymptotic values to the exact values
even for relatively small values of ¢ is noteworthy.

The formulae (58b) and (59) for the source strength and
cross-section area, respectively, can now be recast in terms of
prescribed quantities -

(60b)

a3tn=3 35 [ oV F AT F 20 o5 121 |
@)

S*(n)—8*0)_(V*V,%
S*(O) B(o‘) W/(ﬂ+2°')(1_’7+2°')

[rA—nE—o(1—40)(K—E)] (622)
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where V, is the volume of the original cylinder section,
V,=aRI=I1S(0)=01V>*

Consider the expression (61) for the source function A,*(3).
In the parameter o=gR/l, we may think of 8 as fixed and / as
unity, so that variations in ¢ amount to variations in the
size of the control surface of radius R. Thus, in figure 8, the

45l

A

54

/\(7<\

-10 \

-5

Figurs 8.—Optimum source distributions for various values of the
parameter o, -

case =0 corresponds to the source distribution for the well-
known Sears-Haack body (refs. 16 and 17). It will be noted
in the cases where >0 that the source functions become
less steep and attain lesser maximum values because the
volume remains the same while the control-surface cylinder
is increasing, thus giving a smaller maximum radius of the
added portion.

Next let us examine the expression (62a) for cross-sectional
area. First, we notice that it can be written

s"(n>—S*<o)=;% T2 A—7T2%)

[1Q—nE—e(1—4a)(K—E)] (62b)
in which form it reduces formally for —0 to
S )= Va1 =12 (620)

which is identical with the expression for cross-section aren
of a slender optimum body of prescribed volume (Sears-
Haack body). Of course, V, is, in this case, the total volume
of the body. On the other hand, if we allow the radius of
the control surface to increase indefinitely, equation (62b)
gives (using the asymptotic form for B(s), eq. (60b))

S*(m)—S*(0)=6V.*1(1—n)
In the case when R is very large, we take
S(x)— S(o)=2xE Ar(z) (63)
so we have, returning to the original variables,

V, z(l—2)

Ar@)=6 5 51—

(64)

where V,/2xRl is a finite quantity, and, in fact, is the average
height of the protuberance above the control cylinder. This
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result is clear from physical reasoning, for one would expect
that as the control cylinder increased in radius, the two-
dimensional result for the optimum problem would become
more nearly valid, and, indeed, equation (64) is the formula
for a two-dimensional biconvex section, where Ar is dis-
tance from the mean line, [ is chord length, and maximum

. . (3 V,
thickness is (Z m)-

It will be noted that the ares distribution as given by
equation (62b) has fore-and-aft symmetry, since the function-
al dependence upon 7 involves only the combination 7(1—7).
The maximum cross-section of the optimum body then oc-
curs at the midpoint =% and is given by (from eq. (62b))

S* s S*(0) =2V * 1+E’“; [E o(1— 4a)(K—E):|-—2V*T(cr)
(65)

where the modulus of the elliptic integralsisnow £=1/(144¢).
Figure 9 shows the function 7'(¢) versus o.

.85

;83 \

.81

7o) \
79

77 \\\
M2 3 4 5 6 7 8 9 10

o

Ficure 9.—The function 7'(s).

The drag of the optimum bodies can now be evaluated.
From equations (54) and (56)

po [PR oAEME 27 2 as
D= 4ﬂ'f_pn w/(l—é)—”ﬁ{)\(l EH‘ [(l £) ﬁRg]}

The integral involving A\ vanishes because of the closure
condition. The remaining integration gives

= [T AR Rt )

by equation (53b). Finally, using the evaluation of u, of
equation (60a), we have

Numerical results pertaining to the problem just solved will
be given in a later section, and a summary of the important
formulae is given in the appendix.

QUASI-CYLINDRICAL BODY OF REVOLUTION WITH GIVEN CALIBER

The variational problem.—For this problem, we prescribe
the area at the base of the body, so the given condition is,
from equation (52b)

A8=80)—SO)=F f P (=) A @),

e (l—z)'—FR*?

The variation can be taken as before (now without invoking
the closure condition) on the quantity D-AAS, and it
leads to the integral equation

[ -5 A (@) I—oy—F R

B8R T—2;

(68)

27\
P U (l - 9.7) (69)

The solution to equation (f9) can be written immediately
by analogy with that for equation (56). The presence of a
linear singularity in A,/(z) must be disallowed, however,
according to & condition mentioned in deriving the drag
formula, equation (32). Thus, we have here to set

8¢,AS
wl(l+48F)

and the solution consistent with the given conditions is

A=—

4 ULAS) 1—2z
= [(I+4BR) J(I-+BR—2)(z+BR)

Integrating this expression, we find for the strength of the
optimizing source distribution

A/ (@)=

(70a)

8 TAS)
A=z T+4R)

The source distribution of equation (70b) represents the first
approximsation to the result of reference 3 for nearly equal
front and rear radii.

Properties of the solution.—As in the section on the body
with prescribed volume, we now consider z made dimension-
less by division by /, and again set c=pgR/l. The various
quantities of interest in connection with the caliber problem
then become

o agms VI+BE—2)(z+BE) (70b)

2
D l‘g(a) ©®7) Ao*("l)_f_ 1A_li V(rt+a)1—n+o0) (70c)
S*(n)—S*(0) 2 (1420) 1 +40)0(a? k) —(1—27) (n+20) (1 — 1420\ E—(1+20) (1 —n+20) K an
st allto) VorF20) (1— 1120
where II{c?, k) is ani;)mf;;ete elliptic integral of third kind of ,g”:g;_; [sin-"7— (—25) =7 72
2 _ __ 1 . \ ]
modulus & (1+20) 1 —n+20) and paramefer o 1—71+20 which is the shape function for the well-known Kérmdn

Again K and E are complete elliptic integrals of the first
and second kinds, respectively, of the same modulus %.

If we allow ¢ to approach zero, equation (71) becomes, in
the limit,

ogive (ref. 18). At the other limit, when ¢—=, equation (71)
gives (in the original variables)

Sx)—8(0)_=
AS 1
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or, using the approximation of equation (63),

Arz) =

N OR (73)
which is again the expected two-dimensional result for speci-

fied caliber.
The drag can be found by substituting equation (69) in

equation (54), and then using equation (52b). There results
D 4 (a8y
= a+4) P (74)

A summary of formulae pertaining to this body will be found
in the Appendix.

EXAMPLES OF OPTIMUM BODIES
3

The optimum body of given volume.—In order to examine
in detail the dependence of the body geometry on the param-
eter o, we may return to equation (62a). The quantity
[S*(n) —S5*(0)] is actually the local cross-sectional area added
to the basic cylinder by the action of the source distribution.
In figure 10 are shown some cases of optimum bodies, having
equal additional volume V,*, for several values of the param-
eter ¢. Only half of each distribution is shown, since they
are symmetric about the point 5=1/2. The one labeled
=0 is the Sears-Haack optimum body, and it will be noted
that as o increases, the curves depart rather quickly from
this limiting case and approach the other limiting value of
the biconvex distribution for ¢—w. In fact, a biconvex
arc drawn through the end points of the ¢=1/2 case is indis-
tinguishable from the exact result in the scale used. In the
inset of figure 10 is shown the variation of the drag of the
optimum bodies as a function of ¢. This drag is also based
on equal volume, and shows & fairly rapid decrease with
increasing values of o, due to the decrease in the thickness
of the exposed portion of the body. The dashed curve on

the drag plot is the calculated dragl: A 12] under

the assumption that each meridian section of the body acts
as an independent two-dimensional optimum airfoil. This
admittedly crude approximation is of course very poor at
low values of o, but its accuracy becomes surprisingly good
for o greater than about 0.4, and the approximation becomes
exact in the limit ¢—w.

The variation of local cross section with ¢ can be examined
also on the basis of equal exposed area. Thus, using equa-
tion (65) in combination with equation (62b), we have

[10—nE—ec(1—40)(K—E)] (75)

Pz (I 3 1‘) _ My 1

U, 87¢o z+Br+R) [l —z+BF+E)]
[L(+48R)—4(1+28R)(I—z+B8r+BR)| K+4(I+28R)(I—22)I1(c2, k) }
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Figure 11 shows plots of equation (75), and it is again noted
that the departure from the slender-body approximation
(¢=0) is rapid. The limiting variation of area for g—o is
also shown in figure 11, and it is seen again how closely the
optimum body-shape functions approach this limiting result
even for moderate values of ¢. Also shown is the drag
corresponding to these cases.

D 3

GBS ) 4B(0)[T(0) (76)

which shows a similar drop from the o=0 value as ¢ is
increased. Again, the effective fineness ratio of the bodies
is increasing with o, and, if frontal ares exposed to the

" stream is held fixed, the maximum thickness of the excres-

cence vanishes as 1/o for large ¢. The departure of the
geometric variation from the slender-body case is most pro-
nounced near the nose, y=0, where the slope is given by

S‘(n) 3x V* o
~dn —8 B )(1+4¢r) \/1+2O_ 77

which vanishes only gs +/¢ for ¢—0.

The optimum body of given caliber.—In this case, the maxi-
mum cross-section occurs at y=1 so there is no longitudinal
symmetry. Figure 12 shows, for several values of the pa-
rameter o, the optimum, equal-caliber, incremental cross-
section area given by equation (71). The inset shows the
drag as a function of ¢; from equation (74)

D ] 4
% <_él§> ~w(1+40)

Again in this case, the closeness of the optimum distributions
as o increases to the two-dimensional value (o—w) isg
noticeable. This point has also been made by Ferrari in
reference 5 where problems similar to ours are treated
by a different approach. If the expression for cross-
section area (eq. (71)) is expanded in powers of 1/g, it is
found that

AS*(n,0) _
AS*(1,0)

71(1—71)(1 27) 1>+ (78)

which shows the smallness of the correction to the two-
dimensional result for moderate values of o.

RECIPROCITY RELATIONS

The optimum body of given volume.—The longitudinal and
radial perturbation velocities can be determined by substi-
tuting the derivative of the source-distribution function (eq.
(57)) into the formulae (29) and (30). We find, at any
point (z,r) (r=>R) in the field

{4z+BC¢+R) [l —2+B(r+R) E+

(79a)
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Fiaure 11.—Geometry and drag characteristics of optimum bodies of given volume (bodies having equal additional frontal ares).
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Figure 12.—Geometry and drag characteristics of optimum bodies of given caliber.
elzr)  m 1 " then

U, 8nqr z+BrI+ R)l—z+-BT+R)|
{(—22)[z+Br+R) [l —2z+B(+R)E—
Brifl—2z-+28(r—R) K—48°R(r— R)[l—z+B(r+ R)| K+
483 —RY(I+-28R)I (2 %) } (79b)

where now

i z(l—2x)
T 2B+ R)[I—z+Br+R)]
o 2—B(r—R)
l—z+B(r+R)

For the present axis system, the act of reversing the flow
amounts to substituting I—z for «, and, for the case of the
symmetric body, the longitudinal perturbation velocity in
the reversed flow is

Uzr)=—u(l—z,r)=—0.( —z,1)

Now, from equation (40), pressure in the combined field is
given by
= PaU o(u+7~l’) == PaU o[tp,(I,T) _iaz(l_xyr)] (80)

In order to verify this relation using equation (79a), the
following result, which can be derived from formulae of
reference 20, section 400, will be useful: Let

Vi(z)=1(e,k)

'm@+Vm—@=K+gﬂF¢+ﬂﬁﬁgg+MHdm

This, together with the fact that the modulus %k is invariant
to the substitution of [—« for z, enables us to write im-
mediately

P=5 (—22) (81)
Differentiating equation (81) we find
P4 pu=0 (82)

which agrees with the criterion for minimum drag with
given volume established in equation (47). The Lagrange
multiplier p; is therefore identified as the pressure gradient
in the combined flow field. It will be noted that equations
(81) and (82) hold everywhere within the enveloping forward
and rearward Mach cones of the quasi-cylindrical body
(see fig. 4).

Now considering the radial component of perturbation
velocity ¢, we find, using the relations mentioned just
previously

(p,-(fB,T) ) ‘Pr(l_x:r) B’(rg_Rg)
v, ' U, 4qr

so that the relation

2} (83)

qar(fb,?')= _ﬁaf(l - I,T)



AXTALLY SYMMETRIC SHAPES WITH MINIMUM WAVE DRAG 145

is satisfied on the quasi-cylinder itself, that is, when we set
r=nR.

The optimum body of given caliber.—For this case we find
the following equations for the perturbation velocities:

qo,(:l:,?‘)__ )‘(l +25R)
Uo 2qu'\/[x+B(T+R)] [l_$+B(T+R)]

[K—210(e?, k)]
(842)

erlz,r) A
Uo 2r g [z +Br+R) [l —z+BT+E)]

{[z+B0r+ BRIl —=z+p(r+R)E—Prl+28R) K}

where the elliptic integrals have the same modulus and
parameter as in the previous section.
In this case, the pressure in the combined flow field is

=— o, [pz, 1)+ ol —2,7)] 85)

(84b)

which gives
P=—) (86)
go that in this instance, pressure itself is constant in the

combined flow field.
From equation (84b), we see that

ez, r)=er(l—2,7) (87)

since the modulus of the elliptic integrals is invariant to the
change z—l—z.

Uses of reciprocity relations.—The reciprocity relations
gerve the dual function of checking the derived perturbation
potential against minimization criteria based on other
considerations (see eq. (47)) and of relating the Lagrangian
multipliers to the pressure or pressure gradient in the
combined flow field. Equations (81) and (86) also reveal
that the expressions for pressure in the combined flow field
hold, independently of , throughout the entire region within
the enveloping cones of the bodies. These results are
generalizations of & similar effect noted in reference 19,
where the combined pressure field associated with a Sears-
Haack body was shown to have a constant gradient within
the enveloping cones. In the latter reference, this property
of the minimum-drag bddy was used to expedite the calcula-
tion of interference drag with a satellite body lying within
the enveloping cones. Similar methods could obviously be
applied to the present configurations.

AMES AERONAUTICAL LABORATORY
NATIONAL ADVIsorY COMMITTEE FOR AERONATUTICS
MorrerT Frenp, Cavir., Nov. 22, 1954

APPENDIX A

SUMMARY OF FORMULAE FOR THE OPTIMUM BODIES

The formulae derived in the text for the body shape func-
tion, pressure coefficient, and drag of optimum bodies having
given volume or given caliber are repeated here for con-
venience. The type of configuration treated, and the nomen-
clature, are shown in figure 13.

e Y
BE
ING
7 —
R // //
| / /
K X
_BR \\\ l—ﬁﬁ’\\\
\ \
\
! .

Fieure 13.—Body and associated nomenclature used in drag
minimization.

The pressure coefficient on the body is

0= P—DPo__ Ve

THE OPTIMUM BODY OF GIVEN VOLUME

The variation of AS for the optimum body with given
volume is

"B (BR)

{z(l—2)E(k)—BR(—48R)[K(k)—E(k)]}

AS(z) =—— %5+ (@+28R)(—2+28R)

(A1)
where

AS(&') =a{(R+Ar)*—R7]

=volume of exposed portion

(ﬁ R> B(¢) function defined in equation (60a) and shown
in figure 7

K(k) =complete elliptic integral of first kind of modulus &

E(k) =complete elliptic integral of second kind of modulus
k

B z(l—2z)

~ @+2BR)(—z+2BR)

Examples of optimum bodies for a few values of the param-
eter BE/l are shown in figures 10 and 11.

2@ +28R)(—2+28R)E—[I(+4FR) — —4(+28R)(—2+1-28R)| K+4(+28R) (—22)(c?,k)

Qo U, 21r ‘B (ﬁR>

Y (@+28R)(I—=-+28R)
(A2)
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where II(o?k) is a complete elliptic integral of third kind of
modulus % and parameter o® (in the notation of ref. 20). The
parameter o is given by

e S

l—x+28R
Figure 14 shows some plots of C,/(V,/B) versus z/l for a few
values of the parameter SR/I.

The wave drag of this optimum body is given by

§=3 14_19(‘_91125 (A3)

The variation of drag with SR/ is shown in figures 10 and 11.
THE OPTIMUM BODY OF GIVEN CALIBER

The variation of AS(x) for the optimum body of given
caliber is

2 AS(QD)

[(+-28R)(I+4BR)II(e" k) — (1 —22)(z+ 2BR)(1—2+26R)E—1(I+28R)(1—2+-28R)K
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Figure 14.—Pressure distributions for various cases of the optlmum
body of given volume.

AS(z)= X

(A4)

= I(l+48R)

where the symbols have been defined above. Examples of
optimum bodies for a few values of the parameter SR/l are
shown in figure 12.

The pressure coefficient on the body is given by

8 AS() I4+28R  om(et B)—K

C, =] —
w1 UFAR Gr R i—atoRR)
_3'2 I
7, |
-16 _a’%'lgﬁ\ //
BLRG /
AN
Cp Y 35" \ =
as/R I o=
1.6 // r
/
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32 =
¥ =2 3 4 5 6 T 8 95 10
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Fi1curm 15.—Pressure distributions for various cases of the optimum
body of given caliber.

Figure 15 shows some plots of _AF((JZTZ’ versus z/l for several
values of the parameter SR/I.

The drag of this body is
D 4. [AS()P?
A6
o UT4#$E) 1 (46)
and its variation with R/l is shown in figure 12. -
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